Surface and Uniaxial Electrical Measurements on Layered Cementitious Composites having Cylindrical and Prismatic Geometries
نویسندگان
چکیده
Electrical measurements are becoming a common method to assess the transport properties of concrete. For a saturated homogenous system, the surface resistance and the uniaxial resistance measurements provide equivalent measures of resistivity once geometry is appropriately taken into account. However, cementitious systems are not always homogenous. This article compares bulk and surface resistance measurements in cementitious materials intentionally composed of layered materials (i.e., layers with different resistivities). For this study, layered systems were composed of paste and mortar layers, representing the heterogeneity that can exist in the surface layers of field applications as a result of differences in moisture content, segregation, ionic ingress, carbonation, finishing operations, or ionic leaching. The objective of this article is to illustrate that these electrical measures can differ in layered systems (with sharp layer boundaries) and to demonstrate the impact of the surface layer properties on the estimation for the underlying material properties, for both cylindrical and prismatic specimens. Accounting for the effects of a surface layer requires a separate correction in addition to the overall specimen geometry corrections.
منابع مشابه
Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملCementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance
Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious compo...
متن کاملFlexural Behavior of Cementitious Composites Reinforced by Synthetic Fibers
The application of fibers to reinforce cementitious materials is a well-known subject. At first, asbestos fibers are used in industrial process to produce fiber reinforced cement sheets. Thereafter, various types of synthetic fibers are produced and used as asbestos substitutes. The aim of the present work is to evaluate the effect of synthetic fibers on the flexural behavior of cementitious co...
متن کاملWater Permeability of Cracked Cementitious Composites
Cracking is one of the most severe problems facing the concrete industry worldwide. Of critical importance is the drastic decline of durability associated with these cracks, and the resulting cost of repair or replacement of concrete structures. This research examines the effect of crack width and crack frequency upon the durability of reinforced mortar, quantified by water permeability. Crack ...
متن کاملThe influence of cellulose pulp and cellulose microfibers on the flexural performance of green-engineered cementitious composites
The aim of this study was to investigate the flexural behavior of engineered cementitious composites (ECCs) reinforced by cellulose pulp (CP) and cellulose microfibers (CMF). The reinforcements were obtained from chemical-mechanical treatments of Kraft paper and used in ECC mix design. Results showed that cement reinforced by CP exhibited a strain-hardening behavior in the three-point bending t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014